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Abstract—This paper proposes a lattice structure of biorthog-
onal linear-phase filter banks (BOLPFBs) using new building
blocks which can obtain long filters with fewer number of building
blocks than conventional ones. The structure is derived from a
generalization of the building blocks of first-order LPFBs. Fur-
thermore, the proposed building blocks are applicable for both
even and odd number of channels. The resulting FBs have good
performance in stopband attenuation and low implementation
costs.

Index Terms—Biorthogonal (BO) filter banks (FBs), first-order
(FO) linear-phase FBs, higher order feasible (HOF) building
blocks, lapped transforms.

I. INTRODUCTION

F ILTER BANKS (FBs) and their applications in the wide
area of signal processing have been studied for a few

decades [1]–[3]. There are many properties depending on
the requirements. In practical applications, linear-phase (LP)
property is highly desirable since the symmetric extension can
be used at signal boundaries. Moreover, perfect reconstruction
(PR) is one of the most important properties especially in the
field of signal compression. In this paper, we propose a new
structure of -channel LPPRFBs.

One of the most efficient approaches to implement FBs is
the lattice structure [1], [4]–[6]. It is based on a factorization
of polyphase matrices of FBs. If high-order FBs are desired,
they can be realized by cascading lower ordered building blocks.
Usually order-1 (the highest order of is one) building blocks
are adopted as the lowest order [4]–[6]. The lattice structure of
cascaded order-1 building blocks is effective in the viewpoint of
achieving any-order FBs. However, the high-order FB requires
many order-1 building blocks which increase the implementa-
tion cost. Furthermore, there exists some -channel LPPRFBs
which can not be factorized into the product of order-1 building
blocks when the filter length is longer than [7]. In other
words, there may be a lattice factorization of order-
building blocks for LPPRFBs.
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Therefore, finding the efficient structure of order- building
blocks is an interesting research problem. Generally it is very
complicated since a general order- building block is com-
posed of a matrix polynomial of delay elements ( : some
integer). The problem is to guarantee the LP property and cal-
culate its inverse with a reasonable cost for the synthesis bank.

First-order (FO) LPFBs and their simplified structure
have been studied [8]–[10]. They are generalized versions of

-channel biorthogonal (BO) LPFBs with all the filter length
being (denoted as , hereafter) [4], where the syn-
thesis filter lengths can be longer than those of analysis filters.
In other words, each of them has an order-1 analysis building
block and an order- synthesis building block. They
have shown better results than the traditional BOLPFBs for
image coding [10], with restriction that the longest analysis
filter length is limited to . However, if we desire longer
analysis filters for better frequency characteristic, FOLPFBs
can not be adopted due to the restriction of the analysis filter
length. In spite of the disadvantage, they have an attractive
feature and help to derive an efficient order- structure.

This paper introduces a new building block structure called
higher order feasible (HOF) building block which permits
higher ordered BOLPFBs with fewer building blocks than the
cascaded order-1 structure. Furthermore, building blocks of
BOLPFBs and FOLPFBs belong to subclasses of HOF building
blocks. The proposed FBs can yield long filters with reasonable
implementation costs.

This paper is organized as follows: Section II gives brief
reviews of BOLPFBs and FOLPFBs. The structure of a re-
stricted HOF building block called third-order building block
is represented in Section III. The complete HOF structure is
shown in Section IV, which includes both even and odd-channel
solutions. Section V presents design examples of BOLPFBs by
using the proposed HOF building blocks and the comparison
with the traditional BOLPFB in image coding application.
Section VI concludes the paper.

A. Notations

The identity and reversal matrices are and , respectively.
Also, denotes a block diagonal matrix. For simplicity,
we omit matrix sizes when they are obvious.

II. REVIEW

A. BOLPFBs

Consider an BOLPFB [4]. A typical structure of a
FB and its polyphase representation are shown in Fig. 1. Using
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Fig. 1. � -channel maximally decimated FB. (a) Conventional representation.
(b) Polyphase representation.

the lattice structure, the analysis polyphase matrix can be
represented as

(1)

If PR is achieved, the causal synthesis polyphase matrix
is given as

(2)

When is even, each matrix in (1) is represented as follows:

(3)

(4)

where

If the matrices and are nonsingular, the FB
is a BOLPFB. Furthermore, for can be set to
for simplicity without losing completeness [5]. The simplified
lattice structure is shown in Fig. 2.

Furthermore, the simplified odd-channel BOLPFB is factor-
ized as follows [5]:

(5)

(6)

(7)

where the and are and
nonsingular matrices, respectively, and

(8)

B. FOLPFBs

In [9], the eigenstructure based characterization of
-channel BOLPFBs whose analysis lengths are (they

are called FO) and their synthesis filter lengths are equal to
or longer than was presented. Its lattice structure of the
analysis bank is

(9)

where , each and is

an nonsingular matrix, and is an
block diagonal with Jordan blocks of size ( , is
nonincreasing positive integer and ) with zero
eigenvalue. For example, if and , then

. Moreover, is obtained as follows:

(10)

In this structure, some patterns of the synthesis filter length can
be permitted. If , we can design an FOLPFB whose
analysis filter length is and synthesis length is 12

, 24 or 36 . The corre-
sponding lattice structure is shown in Fig. 3. For further details
on this class of FBs, please refer to articles [8], [9]. Obviously,
when , the resulting FB is a BOLPFB.

III. THIRD-ORDER BOLPFBS AS

GENERALIZATION OF FOLPFBS

In this section, to obtain the HOF building blocks, first we
introduce a generalization of the building block of FOLPFBs.
The generalized building block permits to have a few choices of
filter lengths with one building block up to third order. The third-
order building block is the simplest structure of the proposed
HOF building blocks.

A block-based or time-domain structure of FBs is a good im-
plementation to consider a signal processing framework [11],
[12]. In this paper, the structure helps to realize and under-
stand the proposed HOF building block. The block-based frame-
works in the analysis sides of a BOLPFB and a FOLPFB are
depicted in Fig. 4(a) and (b), respectively. For simplicity, both
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Fig. 2. Lattice structure of an even-channel analysis LPFB (shown for� � �).

Fig. 3. Lattice structure of a FOLPFB (� � ��� �� ��, shown for � � �). (a) Analysis bank. (b) Synthesis bank.

figures are shown for , for the BOLPFB and
for the FOLPFB. In these figures, ,

and . It is easily
understood that delay elements act as a shift operator at bound-
aries of each block transform. Note that the difference
between BOLPFBs and FOLPFBs is the existence of lifting op-
erators between two block transforms. To generalize the struc-
ture of FOLPFBs, it is natural to focus on the lifting steps.

The typical lifting step for two signals consists of one predic-
tion and one update operators [13]. With this consideration, the
matrix with delay elements of FOLPFBs seems to be omitted ei-
ther a prediction operator or an update one with its coefficients.
Conversely, more general structure can be achieved by adding
these operators and coefficients. Consequently, the lattice struc-
ture with the generalized building block is represented as fol-
lows:

(11)

Fig. 4. Time-domain FB structure (shown for � � �, analysis bank). (a)
BOLPFB. (b) FOLPFB.

where
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. . .
. . .

. . .
. . .

. . .

. . .
. . .

. . .

(12)

This building block has third order. Obviously if , the
obtained FB is a FOLPFB (also if , the FB is a
BOLPFB). The building block can yield wider range of filter
lengths up to third order. However, the third-order building
block is also a restricted version of the HOF ones. Furthermore,
in this paper, we consider -channel BOLPFBs with the same
filter length in both analysis and synthesis banks. Unfortunately,
the building block does not guarantee to yield the third-order
inverse for the synthesis bank. In the next section, we derive
the structure of the HOF building blocks based on the concept
of the third-order BOLPFBs.

IV. FORMULATION OF HOF BUILDING BLOCKS

In this section, we introduce the structures and properties of
the proposed HOF building blocks of BOLPFBs.
They can have up to th-order with one building block.
Furthermore, we show that any-order BOLPFBs can be de-
signed by cascading the HOF building blocks. Also feasibility
of odd-channel HOF building blocks is indicated.

A. Structure of Even-Channel HOF Building Blocks

Before we formulate a HOF building block, consider the form
in (12). The differences between block diagonal matrices in

are signs and powers of . Furthermore, main-
tains the lifting structure which implies that belongs to
a subclass of complete lifting matrices.

Generally an nonsingular matrix can always be fac-
torized into called the LDU factorization, where
all matrices have the size and is a permutation ma-
trix, is a lower triangular matrix, is a diagonal matrix, and

is an upper triangular matrix [14]. By using the LDU matrix
factorization, we assume the order- delay matrix as

(13)

where is an invertible matrix using the
LDU factorization and has different powers of from

. In this factorization, a general lifting structure can be
realized.

We expect the factorization of a HOF building block to be
similar to , thus we assume the structure as

(14)

where and are nonsingular matrices, respec-
tively. To derive the condition for as a component

of a BOLPFB, we consider the LP condition of the analysis
polyphase matrix. If all filters of have lengths , the
LP condition is represented as [1], [4]

(15)

where is the diagonal matrix with entries 1 or 1, de-
pending on whether the filter is symmetric ( 1) or antisym-
metric ( 1). Under the assumption in (13), the condition can
be simplified to a constraint of the order- delay matrix as

(16)

The condition in (16) implies that the powers of in
are determined uniquely from those in .

Although the powers of in (16) could have various patterns,
there are a few requirements for them to obtain good frequency
response. First, all diagonal elements in should have
the same powers. Second, the difference between the diagonal
power of in and that in should be .
Third, powers of should be changed gradually to yield con-
secutive filter coefficients. For example, there should not be
next to . We decide the powers and positions of by using
these rules.

Another important rule is considered in this paper. That is,
every element in is a monomial of . It avoids cum-
bersome calculations to obtain the inverse of a HOF building
block since the inverse can be obtained as the product of each
element in (a constant matrix) and powers of .

Next, we reduce the number of redundant parameters in
. It is commonly known that positions of each ma-

trix in the LDU decomposition can be changed without any
disadvantage [15]. In this paper, we assume can be
decomposed into

. . .
. . .

. . .

. . .
...

...
. . .

. . .

. . .
. . .

. . .

(17)

Furthermore, can be merged into the block diagonal
in (14) since

(18)

is always true. Consequently, for a HOF
building block. Additionally, the structure of is re-
stricted to obtain the same filter length in both banks. If we need
an order- HOF building block, is limited to be the
block diagonal matrix whose maximum (and at least one) block
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Fig. 5. Structure of even-channel analysis HOF building block (shown for� � � and fifth order).

size is . Finally, the restriction implies that both
and have to be the block diagonal matrices such as

. . .
. . .

. . .

. . .
. . .

. . .
(19)

where and are
lower and upper triangular matrices whose all diagonal

elements are 1, respectively. Afterwards, we assume the size of
and is for simplicity.

By combining (16) and the structure of , we obtain
the complete structure of as follows:

(20)

In (20), the power of the th element in and
is defined by and , respectively, where

(21)

The building block structure is illustrated in Fig. 5. Moreover,
the inverse of is

(22)

is formulated as

(23)

where . If , the resulting
HOF building block is the same as an order-1 building block.
Furthermore, if and is a block diagonal
matrix with Jordan blocks, the building block is the same as
a FOLPFBs’ component. Consequently, these two traditional
building blocks are special cases of the proposed HOF struc-
ture.

It can permit an odd-order (up to th order) BOLPFB
with one HOF building block. Furthermore, the building block
does not need to calculate its inverse of the matrix polynomial
for since the inverse can be easily obtained as a
product of each element of and or .

B. Realization of Even-Order BOLPFBs With HOF Building
Blocks

In the above subsection, we have formulated the HOF
building block. However, only odd-order BOLPFBs are per-
mitted by using a HOF building block. To realize even-order
BOLPFBs is a challenging problem. Fortunately, the proposed
building block satisfies the order- LP building
block condition [4]. It
suggests that HOF building blocks can be cascaded without
losing the LP property. The previous subsection also introduced
that an order-1 building block belongs to a subclass of HOF
building blocks. After all, even-order BOLPFBs can be realized
by cascading order-1 and HOF building blocks.

C. Structure of Odd-Channel HOF Building Blocks

Up to now, we have just considered the even-channel case.
However, the odd-channel solution should not be omitted. The
previous subsection shows that each HOF building block can be
cascaded. It is useful to obtain the HOF building blocks for FB
with odd .

In [16], the permissible condition on the filter length and
symmetry polarity for LPPRFBs has been presented. For an
odd-channel LPPRFB with all the filter length being , the
condition requires has to be odd. It means that only odd-
channel even-order LPPRFBs can be designed. Hence, to realize
an odd-channel HOF building block, even-order one is only con-
sidered. The structure is expected to be similar to the cascaded
even-channel HOF building block and odd-channel solution for
traditional BOLPFBs [4], [5]. Therefore, an odd-channel HOF
structure can be factorized into

(24)

where the , and are ,
and nonsin-
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gular matrices, respectively. Moreover, is represented
as follows:

(25)
where both and have the size

. For this case, the starting block has the
same structure as a BOLPFB in (7).

D. Comparison of the Numbers of Required Building Blocks,
Design Parameters and Delay Elements

First, we compare the number of building blocks (except )
with the traditional BOLPFBs. By using the HOF structure, the
maximum number of the blocks can be two as long as the order
of the FB is equal to or less than . In other words, the struc-
ture could have various filter lengths within two HOF building
blocks. Conversely, the number of building blocks for tradi-
tional BOLPFBs depends on their required filter lengths. In the
even-channel case, it is easily calculated as . Further-
more, an odd-channel BOLPFB has building blocks
and each building block has two parameterized matrices and

.
Next, we describe the number of design parameters for

in (14). It could have some patterns due to the sizes of
and . For example, when an 8 32 BOLPFB

(third order) with a HOF building block is needed, the sizes of
(denoted as ) could be or

. However, the largest number
(in this case, ) should be considered in
this paper.

For simplicity, the number of design parameters in the third
and fourth order is calculated. Those for higher order can be cal-
culated with the same consideration. In one HOF building block,
there are two nonsingular matrices and . Each of them
has design parameters. Then, parameters in in
(20) are considered. From (19), the largest block size of the
block diagonal matrix in is 2 2 for third order,
hence it has two design parameters. Furthermore, the number
of the 2 2 blocks in is ( for even ,

for odd ) where is a function that returns the
largest integer equal to or less than . Consequently, the total
number of design parameters is for the third
order. In the fourth-order case, an additional order-1 building
block is cascaded to the third-order one. Hence, more
design parameters are required. The total for the fourth order is

.
The comparison of design parameters from third to sixth

order for the even-channel case is shown in Table I. It is obvious
that the HOF structure always has fewer parameters than the
traditional cascaded order-1 structure. Generally many design
parameters yield better filter responses, however, the amount
of the improvement and the eliminable number of parameters
are trade-off issues. Particularly if large number of channels or
long filters are required, the reduction of the number of design
parameters is much recommended than slightly modification of
filter performance.

TABLE I
COMPARISON OF THE NUMBER OF DESIGN PARAMETERS

Finally, the number of delay elements are considered. Al-
though the HOF building block has various patterns depending
on the required filter length, we consider the most general case
of which means . In the
case, the structure in (20) is factorized into

(26)

From the right side of the above equation, the total number of
delay elements is (first term) (third
term) . In contrast, order-1 building
blocks are needed for the traditional

BOLPFB. Each of the order-1 blocks has delays, thus
the total is . Obviously it is
the same as that of the HOF structure. In the order-
cases, the same relationships can be obtained easily. Conse-
quently, the number of the delay elements in a HOF building
block is equal to that in the cascaded order-1 ones.

V. DESIGN EXAMPLES AND IMAGE CODING APPLICATION

A. Design

In this subsection, we present three different designs of
BOLPFBs with HOF building blocks. All FBs are optimized to
have good stopband attenuation which is formulated as [1]

(27)

(28)

The design examples are listed as follows.
Design Example 1: 8-Channel 32-Tap (Third Order)
This is an example of the structure in Section IV-A. The FB
has one . The normalized frequency responses
are shown as solid lines in Fig. 6. To compare with the con-
ventional method, the frequency responses of the 8 32
BOLPFB with order-1 building blocks [4] are also depicted
as dashed lines in the figure. One can see that the proposed
BOLPFB shows worse attenuations in the frequency bands
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Fig. 6. Normalized frequency responses of the proposed 8� 32 third-order BOLPFB (solid lines) and the traditional 8� 32 BOLPFB with the cascaded order-1
structure (dashed lines). (Left) analysis bank. (Right) synthesis bank.

Fig. 7. Normalized frequency responses of the proposed 6 � 36 fifth-order BOLPFB. (Left) analysis bank. (Right) synthesis bank.

around and , whereas better in some fre-
quencies (e.g., around and ) than that of the tra-
ditional one.
Since the HOF system has fewer building blocks and de-
sign parameters than the cascading order-1 structure, the
frequency characteristics provide a good trade-off. Further-
more, in objective performance, the worst stopband atten-
uations in the analysis banks of the HOF structure and the
order-1 structure are 23.20 (dB) and 22.47 (dB), re-
spectively.
Design Example 2: 6-Channel 36-Tap (Fifth Order)
It has one th-order which is also de-
scribed in Section IV-A. Fig. 7 depicts its frequency re-
sponses.
Design Example 3: 5-Channel 25-Tap (Fourth Order)
This example shows the odd-channel solution by using the
HOF building block. The frequency responses are shown
in Fig. 8. It has one order-4 .

It is observed that all examples have good stopband attenua-
tions in both banks. As previously mentioned, BOLPFBs with
the HOF building blocks always have fewer building blocks and

design parameters than the traditional ones. It may lead to re-
duced implementation costs for not only design parameters but
also hardware architecture. These advantages are the reasons for
choosing the HOF building blocks.

B. Image Coding Application

To validate our proposed method, image coding using FBs is
suitable for fair comparison. Here we present the comparison in
image coding with the traditional BOLPFB [4].

For image coding application, additional cost functions
should be considered. In this paper, two additional functions,
which are the coding gain and the DC leakage, are adopted.
The generalized coding gain [17] is formulated as follows:

(29)
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Fig. 8. Normalized frequency responses of the proposed 5 � 25 fourth-order BOLPFB. (Left) analysis bank. (Right) synthesis bank.

TABLE II
COMPARISON OF TRANSFORM PROPERTIES

where and are filter coefficients of an analysis bank
and a synthesis one, respectively, and is an autocorrelation
factor of AR(1) process and is set to 0.95.

Furthermore, the DC leakage is an effective cost function for
image coding since no DC leakage avoids checkerboard artifacts
in compressed images [1]. The DC leakage is represented as

(30)

We re-optimize two (conventional and proposed) 8 32
BOLPFBs shown in the previous subsection. They are opti-
mized by the linear combination of the coding gain and the DC
leakage. The filter coefficients optimized by the pure stopband
attenuation have been set as the initial values of the FBs. The
transform properties of the FBs are denoted in Table II. The
HOF structure has 0.1 dB worse coding gain, however, has
better stopband and DC attenuations than the cascaded order-1
structure. Since the proposed building block is not a simplified
structure of that in the traditional BOLPFBs, i.e., it does not
cover the same class as [4]–[6], the reduced design parameters
would affect to the coding gain as mentioned previously. In
contrast, the reduction hardly affects the performance in the
other two cost functions. The comparison of frequency charac-
teristics optimized for image coding is shown in Fig. 9.

The set partitioning in hierarchical trees (SPIHT) progressive
image transmission algorithm [18] was used to encode the
transformed images. The comparison of the image coding
results is summarized in Table III. Two images Lena and

Fig. 9. Normalized frequency responses of the proposed 8 � 32 third-order
BOLPFB (solid lines) and the traditional 8 � 32 BOLPFB with the cascaded
order-1 structure (dashed lines). Both are the analysis banks and optimized for
image coding application in Section V-B.

Barbara representing images with smooth regions and textures
respectively, were used in the comparison. Furthermore, the
8 16 BOLPFB with one order-1 building block, so-called
the 8 16 GLBT [4], is also compared with the proposed
BOLPFB since the order-1 system is often used for an image
coding benchmark. The BOLPFB with the HOF building block
presents better results than the traditional 8 32 BOLPFB. It
also yields better results than the 8 16 BOLPFB for Lena
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TABLE III
OBJECTIVE PERFORMANCE COMPARISON IN IMAGE CODING (PSNR IN DECIBLES)

(especially 0.24-dB improvement on 32:1 compression), and
comparable performance for Barbara.

The results between the 8 32 BOLPFB with HOF struc-
ture and the cascading order-1 one can be explained as follows.
Roughly speaking, the large number of design parameters in
FBs helps to yield good frequency characteristics, however, it
makes difficult to get the optimal performance. In contrast, the
HOF structure provides ease to obtain solution with the appro-
priate cost since it has fewer number of design parameters than
the cascaded order-1 structure. Furthermore, the difference of
the coding gain (0.1 dB) minorly affects image coding results.
Especially in image coding, the important cost functions include
the stopband attenuation and the DC leakage. The HOF struc-
ture shows better results in these two measures and consequently
achieves better coding performance than the traditional 8 32
BOLPFB.

In contrast, the 8 16 BOLPFB sometimes shows slightly
better PSNR than the 8 32 one with the HOF system. It can
be explained by the well-known fact: Long filters provides less
blocking artifacts in smooth regions (such as skin and back-
ground areas), whereas they often yields more ringing artifacts
around edges of images [1]. It is clear that our long filters work
well in Lena since it has a lot of smooth areas. Unfortunately,
they also reduce the texture definition in Barbara image. Al-
though there exists a trade-off between blocking and ringing ar-
tifacts, our proposed structure will be better for images which
have a lot of smooth regions.

VI. CONCLUSION

In this paper, we proposed a new structure of BOLPFBs by
using HOF building blocks as a generalization of FOLPFBs.
The proposed building blocks can be realized both even and
odd-channel cases, thus it is regarded as an extension for the
traditional structure of BOLPFBs. The building block is useful
to design longer filters. Furthermore, the number of building
blocks is fewer than that in the traditional cascaded order-1
structure which leads to reduced implementation costs in prac-
tical signal processing applications. In image coding applica-
tion, the HOF structure shows better results than the cascaded
order-1 structure. Our future work includes the derivation of
more efficient structures.
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