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ABSTRACT

This paper proposes a new structure of biorthogonal linear-phase
filter banks (BOLPFBs) by using building blocks which can be re-
alized long filters with fewer number of building blocks than con-
ventional ones. The structure is derived from a generalization of
the building blocks of first-order LPFBs. The resulting FBs have
good performance in stopband attenuation and low implementation
costs.

1. INTRODUCTION

Filter banks (FBs) and their applications in the wide area of signal
processing have been studied for a few decades [1]. There are many
properties depending on the requirements. In practical applications,
linear-phase (LP) property is highly desirable since the symmetric
extension can be used at signal boundaries. Moreover, perfect re-
construction (PR) is one of the most important properties especially
in the field of signal compression. In this paper, we propose a new
structure of LPPRFBs.

One of the most efficient approaches to implement FBs is the
lattice structure [1]. It is based on a factorization of polyphase ma-
trices of FBs. If high-order FBs are desired, they can be realized by
cascading lower-ordered building blocks. Usually order-1 (the high-
est order ofz−1 is one) building blocks are adopted as the lowest
order. The cascaded order-1 structure is effective in the viewpoint
of achieving any-order FBs. However, the high-order FB requires
many order-1 building blocks which increase the implementation
cost.

Therefore, finding the efficient structure of order-N building
blocks is an interesting research problem. Generally it is very com-
plicated since a general order-N building block is composed of a
matrix polynomial of delay elementsz−i (i: some integer). The
problem is to guarantee the LP property and calculate its inverse
with a reasonable cost for the synthesis bank.

Makur et al. proposed a new type of LPFBs called first-
order (FO) LPFBs [3]. They are generalized versions ofM× 2M
biorthogonal (BO) LPFBs [2] where the synthesis filter lengths can
be longer than the analysis ones. In other words, each of them has
an order-1 analysis building block and an order-N (N ≥ 1) synthe-
sis building block. It is an attractive feature and helps to derive an
efficient order-N structure.

This paper introduces a new building block structure called
higher-order feasible (HOF) building block which can be permit-
ted higher-ordered BOLPFBs with fewer building blocks than the
cascaded order-1 structure. Furthermore, building blocks of BO-
LPFBs and FOLPFBs are subclasses of HOF building blocks. The
proposed FBs can yield long filters with reasonable implementation
costs.

Notations: The identity and reversal matrices areI andJ, re-
spectively. Also, diag(·) denotes a block diagonal matrix. For sim-
plicity, we omit matrix sizes when they are obvious.
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Figure 1:M-channel maximally decimated filter bank. (a) conven-
tional representation. (b) polyphase representation.

2. REVIEW

2.1 BOLPFBs

Consider anM-channel BOLPFB with filter lengthKM [2]. A typ-
ical structure of a FB and its polyphase representation are shown
in Fig. 1. Using the lattice structure, the analysis polyphase matrix
E(z) can always be represented as

E(z) = GK−1(z)GK−2(z) . . .G1(z)E0. (1)

If PR is achieved, the causal synthesis polyphase matrixR(z) is
given as

R(z) = z−(K−1)E−1
0 G−1

1 (z)G−1
2 (z) . . .G−1

K−1(z). (2)

WhenM is even, each matrix in (1) is represented as follows:

Gi(z) = ΦiWΛ(z)W, E0 =
1√
2

[
U0 U0J
V0 −V0J

]
(3)

whereΦi = diag(Ui ,Vi) and

W =
1√
2

[
IM/2 IM/2
IM/2 −IM/2

]
, Λ(z) =

[
z−1IM/2 0M/2
0M/2 IM/2

]
.

If the M/2×M/2 matricesUi andVi are nonsingular, the FB is
a BOLPFB. Furthermore,Ui for i > 0 can be set toUi ≡ I for
simplicity without losing completeness [4].
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Figure 2: Lattice structure of a FOLPFB (bi = {2,1,1}, shown forM = 8). (a) analysis bank. (b) synthesis bank.

2.2 FOLPFBs

In [3], the eigenstructure based characterization ofM-channel BO-
LPFBs whose analysis filter lengths are2M (they are calledfirst-
order) and synthesis ones are equal to or longer than2M was pre-
sented. Its lattice structure of the analysis bank is

E(z) = diag(U1,V1)W′
[
IM/2z−1−J 0M/2

0M/2 J z−1− IM/2

]

×Wdiag(U0,V0)Wdiag(IM/2,JM/2) (4)

whereW′ = 1√
2

[
IM/2 −IM/2
IM/2 IM/2

]
, eachUi andVi is an M/2×

M/2 nonsingular matrix, andJ is anM/2×M/2 block diagonal
with Jordan blocks of sizebi (i = 0, . . . ,n, bi is nonincreasing posi-
tive integer and∑n

i=0bi = M/2) with zero eigenvalue. For example,

if M = 6 and {bi} = {2,1}, J =

[
0 1 0
0 0 0
0 0 0

]
. Also R(z) is

obtained as follows:

R(z) = z−b0diag(IM/2,JM/2)Wdiag(U−1
0 ,V−1

0 )W

×



IM/2z+

b0

∑
i=2

J i−1zi 0M/2

0M/2 −IM/2−
b0−1

∑
i=1

J iz−i




×W′Tdiag(U−1
1 ,V−1

1 ). (5)

In this structure, some patterns of the synthesis filter length can be
permitted. IfM = 6, we can design a FOLPFB whose analysis fil-
ter length is2×6 = 12 and synthesis length is12 (bi = {1,1,1}),
24 (bi = {2,1}) or 36 (bi = {3}). Their lattice structure is shown
in Fig. 2. For further information of this class of FBs, please refer
to the articles [3, 6]. Obviously, whenbi = {1, . . . ,1}, the obtained
FB is a BOLPFB.

3. FORMULATION OF HIGHER-ORDER FEASIBLE
BUILDING BLOCKS

In this section, we introduce the structure and properties of the
proposed HOF building blocks. They permit to have various fil-
ter lengths with one building block. Furthermore, any-order LPFBs
can be designed by cascading the HOF building blocks. To obtain
the HOF building blocks, first we generalize the building block of
FOLPFBs and then show the complete HOF structure. We consider
an even-channel BOLPFB which has the same filter lengths in both
analysis and synthesis banks.

3.1 Third-Order LPFBs as a Generalization of FOLPFBs

A block-based or time-domain structure of FBs is a good implemen-
tation to consider in a signal processing framework [5]. In this pa-
per, the structure helps to realize and understand the proposed HOF
building block. The block-based framework at the analysis sides
of BOLPFBs and FOLPFBs are depicted in Fig. 3(a) and (b), re-
spectively. For simplicity, both figures are shown forM = 4, K = 2
for the BOLPFB andbi = {2} for the FOLPFB. In these figures,
P0 = WE0, P1 = Φ1W andP2 = Φ1W

′. It is easily understood
that delay elements act as a shift operator at boundaries of each
M×M block transform. The difference between BOLPFBs and
FOLPFBs is the existence of lifting operators between two block
transforms. To generalize the structure of FOLPFBs, it is natural to
focus on the lifting steps.

The typical lifting step for two signals consists of one prediction
and one update operators [8]. With this consideration, the matrix
with delay elements of FOLPFBs seems to be omitted either pre-
diction or update operator with its coefficients. Conversely, more
general structure can be achieved by adding these operators and co-
efficients. Consequently, the proposed structure with the general-
ized building block is represented as follows:

E(z) =
[
U1

V1

]
W′ΛTO(z)W

[
U0

V0

]
W

[
I

J

]
, (6)
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Figure 3: Time-domain filter bank structure (shown forM = 4, anal-
ysis bank). (a) BOLPFB. (b) FOLPFB.

where

ΛTO(z) =

[
z−2Λ̂TO(z) 0M/2

0M/2 −z−1Λ̂TO(z−1)

]

Λ̂TO(z) =




1 0
−p0z−1 1 0

0 −p1z−1 1
...

...
...

...




(7)

×




1 u0z 0

0 1 u1z
...

0 1
...

...
...




.

This buillding block is third-order. Obviously ifpi = 0, the obtained
FB is a FOLPFB (also ifpi = ui = 0, the FB is a BOLPFB). The
building block can yield wider range of filter lengths up to third-
order. However, the third-order building block is a restricted version
of the HOF ones. In the next subsection, we derive the structure of
the HOF building blocks based on the concept of the third-order
LPFBs.

3.2 Structure of HOF Building Blocks

Before we formulate a HOF building block, consider the form in
(7). The differences between each block diagonal component in
ΛTO(z) are signs and powers ofz. Furthermore,ΛTO(z) maintains
the lifting structures which imply thatΛTO(z) belongs to a subclass
of complete lifting matrices.

Generally anM×M nonsingular matrixB can always be fac-
torized intoB = P̄L̄D̄Ū where all matrices have the sizeM×M
andP̄ is a permutation matrix,̄L is a lower triangular matrix,̄D is
a diagonal matrix, and̄U is an upper triangular matrix [7]. By using
the LDU matrix factorization, we assume the delay matrix instead
of ΛTO(z) as

ΛHOF(z) =
[
Λ̂HOF(z) 0

0 −Λ̂HOF(z′)

]
(8)

where Λ̂HOF(1) is an M/2×M/2 nonsingular matrix with the
LDU factorization andΛ̂HOF(z′) has different powers ofz from
Λ̂HOF(z). If E(z) has all filter lengths to beKM, the LP condition
is represented as [1,2]

E(z) = D̂zK−1E(z−1)J (9)

whereD̂ is the diagonal matrix with entries+1or−1, depending on
whether the filter is symmetric (+1) or antisymmetric (−1). Under

the assumption in (8), the condition can be simplified as

Λ̂HOF(z) = z−K+1Λ̂HOF(z′−1). (10)

The condition in (10) implies that the powers ofz in Λ̂HOF(z′) de-
pends on those in̂ΛHOF(z).

Although the powers ofz in (10) could have various patterns,
there are a few requirements forz to obtain good frequency re-
sponses. First, all diagonal elements inΛ̂HOF(z) should have the
same powers. Second, the difference between the diagonal powers
of z in Λ̂HOF(z) andΛ̂HOF(z′) is |1|. Third, powers ofz should be
changed gradually to yield consecutive filter coefficients. For ex-
ample, there should not bez−3 next toz−1. We decide the powers
and positions ofz using these rules.

Another important rule is considered in this paper. That is, each
element ofΛ̂HOF(z) corresponds to only one power ofz. It avoids
cumbersome calculations to obtain the inverse of a HOF building
block. Furthermore, it provides a fact which can be considered
Λ̂HOF(1) and powers ofz separately to yield the inverse. It con-
tributes to decrease calculation costs.

Next, we reduce the number of redundant parameters in
Λ̂HOF(1). It is commonly known that positions of each matrix
in the LDU decomposition can be changed without any disadvan-
tage [9]. In this paper we assumêΛHOF(1) can be decomposed
into

Λ̂HOF(1) = PDLU. (11)

Furthermore, PD can be merged into the block diagonal
diag(U1,V1) since

W′diag(PD,PD) = diag(PD,PD)W′ (12)

is always true. Consequently,̂ΛHOF(1) = LU for a HOF build-
ing block. Additionally, the structure of̂ΛHOF(1) is restricted to
obtain the same filter length in both banks. If we need an order-N
HOF building block,Λ̂HOF(1) is limited to be the block diagonal
matrix whose maximum (and at least one) block size is(N− 1).
The restriction turns out bothL andU have to be the block diago-
nal matrices such as

L = diag(L0,L1, . . .) (13)

U = diag(U0,U1, . . .), (14)

whereLn andRn (n = 0,1, . . . ) are Ñ× Ñ (Ñ ≤ (N− 1)) lower
and upper triangular matrices whose all diagonal elements are1,
respectively. Afterwards, we assume the size ofL0 andU0 is (N−
1)× (N−1) for simplicity.

By combining (10) and the structure ofΛ̂HOF(1), we obtain the
complete structure ofΛHOF(z) as follows:

ΛHOF(z) = z−Ndiag(Λ̂HOF(zi, j ),−Λ̂HOF(z′i, j )) (15)

whereΛ̂HOF(1) = LU andsi, j ands′i, j are, respectively, the powers
of zi, j andz′i, j as

si, j =





si,i =−1
si, j+1 = si, j +1
si+1, j = si, j −1

, s′i, j =−(si, j +1). (16)

Furthermore,N is the highest positive power amongzi, j andz′i, j ,
which is adopted for causal filters. Consequently, the entire HOF
building block is

GHOF(z) = diag(Q,V)W′ΛHOF(z)W (17)
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Figure 4: Structure of analysis HOF building block (shown forM = 6 and fifth-order).
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Figure 5: Normalized frequency responses of the proposed8×32 third-order BOLPFB (solid lines) and the traditional8×32 BOLPFB
with the cascaded order-1 structure (dotted lines). (Left) analysis bank. (Right) synthesis bank.

and its inverse is

G−1
HOF(z) = WΛIHOF (z)W′Tdiag(Q−1,V−1). (18)

ΛIHOF (z) is formulated as

ΛIHOF (z) = z−N′
diag(Λ̂IHOF (z′′i, j ),−Λ̂IHOF (z′i, j )) (19)

whereQ andV areM/2×M/2 nonsingular matrices,̂ΛIHOF (1) =
U−1L−1, z′′i, j = si, j +2 andN′ is the highest positvie power among
z′′i, j and z′i, j . If U = L = I, the HOF building block is the same
as an order-1 building block. Furthermore, ifL = I and (U− I)
is a block diagonal matrix with Jordan blocks, the building block
is the same as a FOLPFBs’ component. It means that these two
traditional building blocks are special cases of the proposed HOF
structure. The building block structure is illustrated in Fig. 4. In
this figure, a black/white triangle indicates a delay/advance element
and the number besides the triangle is the power of the element.

It can permit an odd-order (up to(M−1)-th order) LPFB with
one HOF building block. Furthermore, the building block does not
need to calculate its inverse as the matrix polynomial forG−1(z)
directly, since the inverse can be easily obtained as a product of
each element of̂ΛIHOF (1) andz′′i, j or z′i, j

1.

3.3 Realization of Even-Order LPFBs with HOF building
blocks

In the above subsection, we formulate the HOF building block.
However, only odd-order LPFBs are permitted by using a HOF

1e.g.Λ̂IHOF (z′′i, j ) is the product of the(i, j)-th element ofΛ̂IHOF (1) and
z′′i, j .

building block. To realize even-order LPFBs is a challenging prob-
lem. Fortunately, the proposed building blockG(z) satisfies the
order-N LP building block conditionG(z) = z−ND̂G(z−1)D̂ [2].
It suggests that HOF building blocks can be cascaded each other
without losing the LP property. The previous subsection also intro-
duced an order-1 building block as a subclass of a HOF building
block. After all, even-order LPFBs can be realized by cascading
order-1 and HOF building blocks.

3.4 Comparison of the Numbers of Required Building Blocks
and Design Parameters

First, we compare the number of building blocks (exceptE0) to
the traditional BOLPFBs. By using the HOF structure, the num-
ber of the blocks can be at most two up toM-th order. In other
words, the structure can have various filter lengths within two HOF
building blocks. Conversely, the number of building blocks for tra-
ditional BOLPFBs depends on their required filter lengths. In the
even-channel case, it is easily calculated as(K−1).

Next, we describe the number of design parameters. The com-
parison from third to sixth-order is shown in Table 1. In this table,
L, m andb·c areM/2, M modulo6 and a function that returns the
largest integer less than or equal to(·), respectively. The number
of design parameters ofGHOF(z) in (17) could be some patterns
due to the structures ofL andU. However, the largest numbers are
shown in the table for fair comparison. It is obvious that the HOF
structure always has fewer parameters than the traditional cascaded
order-1 structure.

Generally many design parameters yield better filter responses,
however, the amount of the improvement and the eliminable num-
ber of parameters are trade-off. Especially if many channels or long
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Figure 6: Normalized frequency responses of the proposed6×36fifth-order BOLPFB. (Left) analysis bank. (Right) synthesis bank.

Table 1: Comparison of the Number of Design Parameters
Order Cascaded Order-1 HOF Build. blocks

3 3L2 2(L2 + bL/2c)
4 4L2 3L2 +2bL/2c
5 5L2 2(L2 +3bL/3c+ bm/4c)
6 6L2 3L2 +2(3bL/3c+ bm/4c)

filters are required, reduction of the number of design parameters
is much recommended than slightly modification of filter perfor-
mance.

4. DESIGN

In this section, we present two different designs of BOLPFBs with
the HOF building blocks. All FBs are optimized to have good stop-
band attenuation which is formulated as [1]

Cana. st pb. =
M−1

∑
i=0

∫

ω∈i−thstopband
|Hi(ejω )|2dω (20)

Csyn. st pb. =
M−1

∑
i=0

∫

ω∈i−thstopband
|Fi(ejω )|2dω. (21)

The design examples are listed as follows:
Design Example 1: 8-Channel 32-Tap (Third-Order)

This is an example of the structure in Section 3.1. The FB has
oneGHOF(z). The normalized frequency responses are shown as
solid lines in Fig. 5. To compare with the conventional method, the
frequency responses of the8×32 BOLPFB with order-1 building
blocks [2] are also depicted as dotted lines in the figure. Obviously,
the proposed BOLPFB shows comparable results in both banks de-
spite of fewer building blocks and design parameters. Furthermore,
in objective performance, the worst stopband attenuations of the
HOF structure and the order-1 structure are -23.20 (dB) and -22.47
(dB), respectively.

Design Example 2: 6-Channel 36-Tap (Fifth-Order)
It has one (M−1)-th orderGHOF(z) which is described in Section
3.2. Fig. 6 depicts its frequency responses.

It is observed that all examples have good stopband attenuations
in both banks. As previously mentioned, BOLPFBs with the HOF
building blocks always have fewer building blocks and design pa-
rameters than the traditional one. It may lead to reduce implemen-
tation costs for not only design parameters but also a hardware ar-
chitecture. These advantages are the reasons for choosing the HOF
building blocks.

5. CONCLUSIONS

In this paper, we proposed a new structure of BOLPFBs by using
HOF building blocks. The building block is useful to design longer
filters. Furthermore, the number of building blocks is smaller than
the traditional cascaded order-1 structure which leads to reduce im-
plementation costs in practical signal processing applications. Our
future work is to derive more efficient structures.
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