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Multiresolution Image Representation Using
Combined 2-D and 1-D Directional Filter Banks
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Abstract—In this paper, effective multiresolution image rep-
resentations using a combination of 2-D filter bank (FB) and
directional wavelet transform (WT) are presented. The proposed
methods yield simple implementation and low computation costs
compared to previous 1-D and 2-D FB combinations or adaptive
directional WT methods. Furthermore, they are nonredundant
transforms and realize quad-tree like multiresolution representa-
tions. In applications on nonlinear approximation, image coding,
and denoising, the proposed filter banks show visual quality
improvements and have higher PSNR than the conventional
separable WT or the contourlet.

Index Terms—Directional filter banks, directional wavelet trans-
forms, image coding, multiresolution representation, nonlinear ap-
proximation, 2-D filter banks, wavelet transforms.

I. INTRODUCTION

HE traditional scheme to realize multiresolution image
representation (MIR) is to apply 1-D filters separately
in horizontal and vertical directions, commonly referred to as
“separable” transform. In contrast, “nonseparable” transforms
consist of 2-D filters and 2-D downsampling matrices which
cannot be factorized into 1-D filter/downsampling pairs. The
traditional wavelet transform (WT) is categorized as a sep-
arable transform, which is used in various applications [1],
[2]. However, it has poor diagonal orientation selectivity since
frequencies with different orientation are gathered into one
subband in each resolution. For example, in image coding for
low bit rates, reconstructed images often have blurred regions
for diagonal orientations.
To reduce the artifact, some combinations of 1-D separable
and 2-D nonseparable filter banks (FBs) have been proposed.
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The contourlet transform [3] is one of the most well-known
transforms in this category, which obtains MIR as Laplacian
pyramid [4]. It is strongly related to curvelets [5]-[7] and it
succeeded to represent images by using fixed (nonadaptive) im-
plementation, which is suitable for simple representation of im-
ages. The method shows good results in nonlinear approxima-
tion (NLA); however, it is a redundant transform due to the
Laplacian pyramid. Redundancy is not desirable in many prac-
tical signal processing applications, and, thus, its critically sam-
pled improvement, CRISP-contourlet [8], was recently devel-
oped. However, it requires several sets of 2-D FBs which have
specific (unusual) passband supports. A new multiscale decom-
position instead of the Laplacian pyramid for the contourlet has
been proposed [9]. It shows improvements on image denoising;
however, it still has redundancy and does not use the traditional
WT filters. This implies that we cannot apply it as a simple al-
ternative of the WT.

In [10], a simple tree-structure of 2-D FBs, called uniform-
quincunx directional FB (uqDFB), was presented where “quin-
cunx” means the downsampling matrix Q for 2-D FBs and is de-

fined as Q = } _11 . The ugDFB consists of only diamond

and fan support shape FBs. The ugDFB can also merge its two
lowest frequency subbands to represent the low-frequency re-
gion effectively. Itis called nonuniform quincunx directional FB
(nugDFB) and the low-frequency subband can be transformed
by a separable WT. The nugDFB shows better results in NLA
than the contourlet due to its nonredundancy. However, it still
remains a problem that the transformed image cannot generate
the traditional quad-tree MIR, and, hence, the quad-tree coding
cannot be used. To overcome this problem on the 2-D FB-based
MIR, directional FB [11]-[13] is applied to the highpass sub-
bands transformed by the separable WT in [14]. This hybrid
wavelet and directional transform (HWD) is suitable for the
conventional image coding method since every subband trans-
formed by directional FBs corresponds to that of the separable
WT. The HWD yields better visual quality in reconstructed im-
ages than the separable WT when the set partitioning in hier-
archical trees (SPIHT) [15] is employed as an image encoder.
However, many transforms by 2-D FBs are required when we
need good orientation selectivity. Therefore, the computation
cost for the HWD is much higher than that of the separable WT.

Furthermore, a number of transforms classify and decompose
images into blocks with similar directional features and process
each decomposed block depending on directional information.
Typical ones are directionlets [16], [17], wedgelets [18]-[20],
bandelets [21], [22], and ridgelets [23]. They need the decom-
position and directional features as side information, which has
to be transmitted losslessly and managed carefully. Thus, one
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Fig. 1. Two TODFB frameworks where SepWT and DirWT referred to separable WT and directional WT, respectively. (Left) Q-TODFB (introduced in Sec-

tion I11). (Right) D-TODFB (introduced in Section 1V).

needs nonadaptive and nonredundant transforms for some ap-
plications.

Another method is not to discard high-frequency regions for
image coding at low bit rates. It needs only 1-D WT filters and
is based on transform along the “curves” in images [24]-[30].
In other words, 1-D filters are rotated (or skewed) to fit lines in
images (such as edges between objects and background). We de-
note this type of WTs as “directional WT” hereafter. First, the
directional WT transforms an original image with the vertical
downsampling matrix M, = diag(1,2), and then transforms
with the horizontal one M, = diag(2, 1) (or vice versa). After
both downsamplings of the directional WT, one has four sub-
bands corresponding to the traditional WT’s LL, LH, HL, and
HH. Obviously the LL subband can be transformed recursively;
thus, finally the quad-tree MIR is obtained. The directional WTs
are suited for the conventional quad-tree coders.

By transforming along the curves in images, the directional
WTs preserve both high-frequency and low-frequency informa-
tion even in low bit rates where the separable WTs often yield
blurred artifacts. However, they have some drawbacks com-
pared to the traditional separable WT. The main drawback is
the computation cost to determine the curves in images. At each
pixel, transforms are needed for several directions to decide
the direction which maximizes the energy in LL subband (i.e.,
minimizes the energies in LH, HL, and HH subbands). Further-
more, some directional WTs support sub-pel and quarter-pel
accuracy for each direction which would contribute to better
representation of curves along with a significantly higher com-
putation cost than that of the separable WTs. Furthermore, they
need to transmit the side information of the curves to decoder.
Although this barely affects the entire bit budget to be encoded,
it usually requires a careful manipulation to store or transmit
since it should be lossless data.

To overcome the previously mentioned problems, we pro-
pose new combinations of 2-D and 1-D directional (TOD) FBs
based on 2-D nonseparable FBs and the directional WT. In this
paper, two TODFBs are provided to use the effective existing
framework of the separable WT. Their frameworks are shown
in Fig. 1. One of the TODFBs uses a combined FB before de-
composing by the separable WT (left side of Fig. 1), whereas a
combination is used to decompose high-frequency subbands ob-
tained from the separable WT in the other TODFB (right side of
Fig. 1). It is worth noting that these TODFBs use different 2-D
FBs but have the same purpose: The first stage in the TODFB

()l > = frova o)

Fig. 2. Multirate identity.

extracts the curves in the subbands by the 2-D FBs, and the
second stage reduces the redundancy in these curves by the di-
rectional WTs. They do not require any adaptive processing as in
the conventional directional WTs. The proposed combinations
are simple, but preserve both low- and high-frequency informa-
tion even after the quantization/truncation of many transformed
coefficients.

This paper is organized as follows. Section Il gives reviews of
the traditional 2-D FB-based MIRs and the directional WTs. The
first TODFB shown in Fig. 1(a) is presented in Section Ill. In
Section 1V, the second approach, i.e., the structure of Fig. 1(b),
is presented. Application results using TODFBs and their com-
parison with those of the traditional MIRs are shown in Sec-
tion V. Finally, Section VI concludes the paper.

Il. BRIEF REVIEW

A. 2-D Multirate Identity

Multirate identity (often called noble identity) is a useful tool
to analyze multidimensional multirate systems [1]. Its analysis
side is illustrated in Fig. 2 where H(w) and M are a filter and
a 2 x 2 downsampling matrix, respectively. The synthesis one
can be inferred similarly. With multirate identity, the order of a
filter and a downsampling matrix can be interchanged.

B. Directional Filter Banks and Contourlets

The directional FB was first proposed by Bamberger and
Smith [11], [12], and then their improved tree-structure version
was presented in [13]. The key idea is to divide the frequency
plane into several parts which correspond to the specific
frequency directions. The frequency plane partition of a direc-
tional FB with eight subbands is represented in Fig. 3. With the
improved structure [13], they are realized by using quincunx
FBs and parallelogram ones. Their resulting downsampling
matrix D for the subband i is

_ [diag (2("V,2) 0<i< (2"l -1)

B {diag (2,207D) 2l << (2m —1) @)
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Fig. 3. Frequency partition for the directional FB with eight subbands.

where n is the decomposition level. They can divide orientations
in images effectively, although all the subbands keep low-fre-
quency energy. It often becomes a disadvantage in practical
image processing such as compression, since images usually
have large amounts of DC energy. In other words, to concen-
trate DC energy into the lowest subband is an important issue
for such applications.

The contourlet transform [3] can be realized by applying the
directional FB to the highpass subband which is obtained from
Laplacian pyramid [4]. It solves the problem of the directional
FBs as mentioned previously. However, it is a redundant trans-
form, i.e., itis regarded as a type of overcomplete transforms. In-
deed, some image coding applications using the contourlet with
its parent-children relationship were proposed [31], [32]. Un-
fortunately, they are inferior to the traditional WT image coder
especially for natural images.

C. Directional Wavelet Transforms

Directional WTs are based on the combination of 1-D down-
sampling and transforming by 1-D WT filters along the 2-D
directions. Obviously lines in images, called “curves” in this
paper, often flow toward diagonal orientations. A curve has sim-
ilar information to its component; hence, the 1-D filtering along
the curve is expected to concentrate the energy into the low-fre-
guency subband.

Some of the directional WTs [26], [28], [30] are based on the
lifting implementation of the separable WTs [33]. We use this
scheme for our proposed combination. The directional lifting
steps are illustrated in Fig. 4. Let 2:(m, n) denote the pixel value
at (m,n). A prediction step for a direction 6 with the vertical
downsampling [28] is represented as

h(m,2n+ 1) = z(m,2n + 1) — P(m,2n) 2

where h(m,2n + 1) represents a highpass branch of the direc-
tional lifting step and

P(m,2n) = p; (x (m —tanb,2(n — 1))
+z (m+tanb,2(n+1+ 1)) (3)

in which p; is a coefficient for this prediction step and [ is a
nonnegative integer. An updating step is given by

I(m,2n) = x(m,2n) + U(m,2n + 1) 4

Fig. 4. Directional lifting steps for the directional WT. (Left) prediction step.
(Right) updating step.
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Fig. 5. Directions for the directional WT.

where [(n, 2n) represents a lowpass branch and

Um,2n+1) =u; (h(m—tan,2(n —1) — 1)
+h(m+tanb,2(n—1)+1)) (5)

in which u; is an updating coefficient. Clearly, these lifting steps
are perfect reconstruction and can be cascaded with other lifting
steps similar to the separable WTs. In this paper, we use the
lifting coefficients of the 9/7 WT in [33]

po = —1.586134342

1 = —0.05298011854

p1 = 0.8829110762 (6)
w1 = 0.4435068522

s0 = 1.149604398, s1 = 1/s

where sq and s are scaling coefficients of lowpass and highpass
branches, respectively.

We define the notations of the transform directions by the
directional WT as the relative pixel position from the pixel to
be transformed. Some typical directions are illustrated in Fig. 5
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Fig. 6. Q-TODFB decomposition.

Fig. 7. Diamond FB presented as in [34].

where the direction for the separable WT is defined as (0, 1). In
this paper, we consider only the directions for the vertical down-
sampling M,, = diag(1, 2) since the horizontal downsampling
version can be easily obtained as the transposition of the vertical
downsampling one. Note that the even (odd) row to be trans-
formed requires neighbor odd (even) rows in each lifting step for
perfect reconstruction. Therefore, the directions (1, 2), (—1, 2),
etc., cannot be transformed without interpolating pixels.

In the previous works [26], [28], [30], the half-pel and
quarter-pel accuracies for the transform directions with pixel
interpolation are permitted. Although it increases possibilities
to obtain true curves, it may lead to an inefficient exploitation
of correlation among pixels even if the optimal interpolation
filter is designed since edges in images are generally sharp [30].

I1l. TODFB WITH QUINCUNX FBsS

This section introduces the TODFB using quincunx FBs as its
2-D stage. The image is primarily decomposed by the quincunx
FBs, and then its high-frequency subbands are transformed by
the directional WTs for specific directions. The entire decom-
position is shown in Fig. 6. In this figure, arrowheads in “Direc-
tional WT Stage” represent the transform directions. For sub-
bands 1, 2, and 3, the 9/7 directional lifting WT is applied in the
direction (0, 1), (—1, 1), and (1, 1) first, and then in the direc-
tion (1, 0), (1, 1), and (—1, 1), respectively. The downsampling
matrix for the low-frequency resolution (subband 0) is always

IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 18, NO. 2, FEBRUARY 2009

Fig. 8. 2-D stage in the Q-TODFB framework. (Top) Frequency plane partition
where numbers represent subband indices. (Bottom) Subband 2 after 1-level
decomposition which represents the direction along (1, 1).
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Fig.9. Diagonally quadrant FB. (a) ideal passbands (gray areas). (b) Frequency
responses presented in [35].

Q? = diag(2,2), which is the same as that of the separable
WT. Consequently, the low-resolution image is transformed re-
cursively by the TODFB or the separable WT. Hereafter, this
kind of TODFBs is called Q-TODFB where “Q” stands on the
initial letter of quincunx FB.

To fit the obtained MIR for the TODFBs to the traditional
quad-tree MIR, we consider one important condition. That is,
the entire downsampling matrix should be diag(2*,2*) where
k is a positive integer since the resulting subbands should keep
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Fig. 10. Finer directional WT [36]. (Left) Frequency plane partition. (Right) decomposition framework.

the aspect ratio of the original image. It will be useful in some
applications.

A. 2-D Stage in Q-TODFB

In the Q-TODFB, the original image is first decomposed by
two 2-D quincunx FBs, one consisting of a diamond filter and
its complementary filter, and the other a fan filter pair. The fan
FB is fundamentally realized to modulate horizontally (or ver-
tically) the diamond FB by ¢/™; thus, we now consider required
properties for adiamond FB. The most important property in the
Q-TODFB or other image processing using FBs is regularity of
filters since avoiding DC leakage in highpass filters is strongly
desirable. In this paper, we employ the diamond FB proposed in
[34] which is based on the direct optimization of its filter coef-
ficients. Both lowpass and highpass filter sizes are 11 x 11 and
there are two zeros at aliasing frequencies (Fig. 7). There are
many methods to design 2-D diamond or fan FBs, however, the
FB used here has a short highpass filter length. The regions con-
taining high-frequency, e.g. edges and curves, usually exist lo-
cally. The short highpass filter will capture that high-frequency
information well. The fan FB is determined as a modulated ver-
sion of the diamond FB.

Fig. 8 shows the frequency plane partition using quincunx
FBs after 1-level decomposition? and the subband 2 of Barbara
by 2-D quincunx FBs. In the frequency partition, the indices
refer to those in Fig. 6. For clear visualization, the magnitudes
of transform coefficients are emphasized. Clearly, it captures
the high-frequency coefficients which are distributed on the spe-
cific direction along (—1, 1). Consequently, the 2-D stage in the
Q-TODFB framework provides a new MIR with the downsam-
pling matrix diag(2,2): lowpass, highpass with the horizontal-
vertical curves, highpass with the curves along (-1, 1), and
highpass with the curves along (1, 1).

1The downsampling matrix of -level decomposition is [ } .

B. Directional 1-D Stage in Q-TODFB

The previous subsection shows that the 2-D quincunx FBs
decompose directional high-frequency energy in the original
image well. Then, the Q-TODFB performs the directional 1-D
stage. The curve determining process required in the adaptive
directional WTs no longer exists for the Q-TODFB since its
2-D stage divides the curves along the specific directions. In
this stage, the subband 1 is further decomposed by the separable
WT. It corresponds to transforming along the vertical and hor-
izontal curves since the subband 1 can be classified into a sub-
band with high-frequency components including these curves.
Furthermore, the downsampling matrix for the subband 0 is
diag(2, 2); thus, its size is one fourth of the original image. The
Q-TODFB can be applied to the subband 0 recursively if needed.

IV. TODFB WITH DIAGONALLY QUADRANT FBs

In this section, another type of TODFBs is presented. It uses
the separable WT as a preprocessing in each level, and then
the 2-D FBs and directional WTs further decompose the high-
frequency directions. For the 2-D stage, we employ a diagonally
quadrant FB whose passbands are illustrated in Fig. 9(a). We
describe the details of this TODFB called D-TODFB where “D”
stands on the initial letter of diagonally quadrant FB.

A. 2-D Stage in D-TODFB

For the D-TODFB, the input image is first decomposed by the
separable WT yielding four subbands LL, LH, HL and HH for
each level. Traditionally, these three highpass subbands have a
problem, that is, the different directional frequencies are gath-
ered into one subband, which prevents from yielding an effec-
tive MIR. Especially two orthogonal diagonal frequencies with
orientations (—1, 1) and (1, 1) are in the HH subband. There-
fore, we consider to improve its high-frequency decomposition
using 2-D FBs and directional WTs as a postprocessing of the
separable WT. The separable WT/diagonally quadrant FB pair
was already proposed in [36] as the finer directional WT (shown
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Fig. 11. 1-level decomposition by the finer directional WT [36]. For clear vi-
sualization, the magnitudes of transform coefficients are emphasized.

in Fig. 10). However, any effective applications are not shown
in it. We borrow its structure partially and add some effective
features for practical image processing.

The high-frequency subbands yielded by the separable WT
are further decomposed by diagonally quadrant FBs. After that,
six subbands compose the 1-level high-frequency resolution. In
this paper, the diagonally quadrant FB is realized by using the
transformation variables method proposed in [35, Example 6.2,
p. 477]. Its frequency response is shown in Fig. 9(b). The MIR
yielded by the finer directional WT is shown in Fig. 11. For clear
visualization, the magnitudes of the transformed coefficients in
high-frequency subband is emphasized.

The resulting high-frequency subbands obtained by the
diagonally quadrant FBs are required to have downsampling
with a factor of 2. In [36], all the downsampling matrices are
diag(2,1) (horizontal), however, there is an interesting property
for downsampling matrices which is specific for diagonally
quadrant FBs—they permit both of the downsampling matrices
diag(2,1) and diag(1,2) without aliasing. Though this property
is usually not important, it is very helpful for the D-TODFB to
transform along the curves by the directional WTs. In the next
subsection, we present the relationship between the downsam-
pling matrices and the directional WTs.

B. Directional 1-D Stage in D-TODFB

Similar to the Q-TODFB, the directional WT stage is required
to transform the highpass subbands along the specific directions.
We describe the transform directions for three high-frequency
resolutions with taking into account downsampling matrices for
diagonally quadrant FBs.

1) Directions for LH Subband: The frequency plane parti-
tions for the LH region after the transform by the diagonally
quadrant FBs are shown in Fig. 10. The main frequency direc-
tions are (1,2) and (—1,2); hence, the main curve directions are
(2,1) and (—2,1), respectively. The horizontal downsampling
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Fig. 12. Alternate directions for the HH resolution. Solid arrowheads denote
the direction along Deg(1, 1) and dashed ones along Deg(1, 3).
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Fig. 13. NLA comparison to determine the transform directions for
D-TODFBs in the HH resolution.
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Fig. 14. Complete structure of the D-TODFB. are the horizontal

and vertical downsamplings, respectively.

corresponding to the filtering by the diagonally quadrant FB is
applied to this subband. After that, each subband in LH halves
the number of columns. In other words, if we have the (ag, a;)
curve direction before the horizontal downsampling, it becomes
(ao/2,aq) after it. Finally, in this case, the curve directions are
changed into (1,1) and (—1,1). Consequently, the two down-
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