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ABSTRACT

In recent years, two-channel complex-valued filterbanks have
been studied and found theirs several important applications
by many reseachers, such as complex signal and image pro-
cessing. One of those important results is that there is no two-
channel complex-valued linear-phase paraunitary filterbank
(CLPPUFB), except for its filter lengths of 2. In this paper, we
introduce a class of special complex-valued filterbanks which
is a subclass of biorthogonal filterbanks: Those filterbanks
are called complex pseudo-orthogonal filterbanks (CPOFB),
based on the concept of pseudo-orthogonality (PO). This kind
of orthogonality, we propose, is different from the conven-
tional one essentially. This paper also shows possibility to de-
sign a two-channel complex linear-phase filterbank (CLPFB)
with its filter lengths are more than 2, based on PO. Finally,
we show a design example of a complex linear-phase pseudo-
orthogonal filterbank (CLPPOFB). Moreover, such CPOFB
can satisfy the linear-phase condition simultaneously with fil-
ter lengths are more than 2. This paper shows a theory, a
design method and an example of CLPPOFB.

1. INTRODUCTION

In various fields of signal processing, Filterbanks (FBs) have
been used. FBs decompose a signal, e.g. speech and image
signals, into frequency subbands. Then, the signals are coded
and transmitted, and finally composed on the side of a re-
ceiver. In this paper, we consider a kind of the two-channel
complex-valued filterbanks (CFBs). Up to date, there are sev-
eral important results, properties and applications of CFBs,
e.g. motion estimation, texture analysis, image fusion, etc [1]
-[91].

Paraunitary (PU) and the linear-phase (LP) property are
important properties for FBs. One advantage of paraunitari-
ness is that FBs can be designed more easier than any other
implementation, because synthesis filters are the complex con-
jugate and the time-reverse version of analysis filters. On the
other hand, the advantage of the LP property is very useful
for image compression because LP filters can be used for the
symmetric extension at boundaries of signals [10]. Hence,
FBs meeting both PU and the LP properties are desired to
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design . However, it is impossible to construct two-channel
CLPPUFB with filter lengths are more than 2 [9].

Thus, we propose the CPOFB based on the concept of PO
in this paper. PO is different from conventional orthogonality,
but it can preserve the advantage of orthogonality. That is, the
simplicity of FB design. Moreover, such CPOFB can satisfy
the LP condition simultaneously even if filter lengths are more
than 2. This paper shows a theory, a design method and an
example of CLPPOFB.

Notations : Bold faced letters indicates vectors and ma-
trices. I is the identity matrix. z denotes the complex con-
jugate of z. The superscript H denotes complex conjugated
transpose and T denotes transpose. R and C denote the set
of real numbers and complex numbers, respectively. CV rep-
resents the N-dimmensional complex vector space. M2 (C)
denotes the set of 2 X 2 matrices which entries are in C. §(k)
is kronecker’s delta.

2. REVIEW

2.1. Two-Channel Paraunitary Filterbank

Paraunitariness of the two-channel CFB is equivalent to the
following equation.

E)EZ(z 1) =dc (ceC), (1)

where E(z) is the analysis polyphase matrix. From this equa-
tion, we obtain next two equations.

hi(n) = =(=1)"ho(N —n) 2
> ho(m)ho(n = k) = §(k), (3)

where hg and h; are the lowpass and highpass filter of the
CFB, respectively. If filter coefficients are real, then (1), (2)
and (3) do not need complex conjugate. In addition to these
conditions, the length of the lowpass filter must be even.

2.2. Lattice Structure

Designing a FB by using a lattice structure is more useful and
easier than a direct implementation. The reason is that a LP
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or PU perfect reconstruction FB with long filter lengths can
be constructed by cascading building blocks. Complete and
minimal lattice structure of a two-channel PUFB and a LPFB
have been proposed [11].

2.2.1. Paraunitariness

Two-channel real-valued PUFBs can be designed by the fol-
lowing lattice structure [11].

Epory(2) = RyA(2)Ry—1 - R1A(2)Ry, “4)

where E, o, is the analysis polyphase matrix, R and A(%z)
are

cos 0,

Rp=| _ sin 6y,

sin 6y, 1 0
COS@[C :| 9 A(Z) - |: 0 Z—l :| 9 (5)

respectively (65 € R).

2.2.2. Linear-phase property

The LP property of two-channel real-valued FBs imply that
filter coefficients of each lowpass and highpass filter have to
be symmetry and antisymmetry (in the case of complex co-
efficients, filters have to be hermitian symmetry and antisym-
metry). The LPFBs can be represented as follows [11] :

1 1

EPOICU(Z) = |: 1 -1 SNA(Z)SN—ISIA(Z)807 (6)

where E,oy is the analysis polyphase matrix and Sy, is

e
|

and A(z) is same as (5).

(forreal : a,b € R)

(for complex : a,b € C)

e o R
2 e o

3. COMPLEX PSEUDO-ORTHOGONAL
FILTERBANKS

3.1. Pseudo-Orthogonality

In this section, we introduce the new concept, PO. First, we
consider an operator (-, -) denoted as follows:

Forx = (z1---zn)T,y = (31 ---yn)T € CV, we de-
fine (-,-) : CV x CN - C

N
(x,y) =Y wiTr- (7
k=1

It is well-known that (7) satisfies the inner product definition.
If (x,y) = 0, then we call x and y are orthogonal.

Next, we consider the above (-, -) without complex conju-
gate

N
(X, ¥)p = > Tkl ®)
k=1

For real numbers, (-, -),, satisfies the inner product definition,
whereas it does not for complex numbers since for some x €
CN, (x,x), < 0.

Now, we define the pseudo-orthogonality with (-, -) .

Definition 1 x andy (€ CN) are pseudo-orthogonal if and
only if
(x,y)p = 0.

Then, we extend this pseudo-orthogonality to the polyphase
matrix version.

Definition 2 A CFB is pseudo-orthogonal if and only if its
analysis polyphase matrix E(z) satisfy

EREIz ) =c (c€Q) 9

3.2. The properties and the lattice structure of CPOFB

In this section, we discuss properties and an implementation
of CPOFB.

First, properties of CPOFB are almost same as real-valued
PUFBs. From (9), the following equations can be verified

hi(n) = —(=1)"ho(N —n) (10)
> ho(n)ho(n — k) = 8(k), (11)

where hg and h; were mentioned previously. The highpass
filter is the time-reverse and sign alternated version of the
lowpass filter, without complex conjugate. However if the
lowpass filter satisfies the LP property, that means its coef-
ficients are hermitian-symmetry, the resulting highpass filter
related in (10) also satisfies the LP property. As well as the
PUFB, the lowpass filter of CPOFB must be even.

Next, one of the easiest design method of CPOFB is using
a lattice structure. Here, we consider building blocks of the
lattice for CPOFB.

Let A = | ¢ Z

pseudo-orthogonal matrix, we should replace (c,d) by the
flipped and sign alternated version of (a, b)

A= a b c=—b,d=a A= a b )
c d —-b a

] € M>(C) . In order to A to be a

If both A and B are pseudo-orthogonal matrices, the prod-
uct AB is also pseudo-orthogonal matrix. Since A(z) in (5)
is also pseudo-orthogonal matrix, we can obtain the analysis
polyphase matrix E, (2) of CPOFB by using the following
lattice structure

Epoly(z) = PNA(Z)PN,1 s PlA(Z)PO (12)
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where Py, € M>(C) is

| ar by

P, = [ b ay ] . (13)
Conversely, any CPOFB can be expressed (12).
proof:
Order-N polyphase matrix E ,;, can be expressed as

N
Epoly = ZEkZ_k, (14)
k=0

where E;, € M5(C). The condition of pseudo-orthogonality
is

E! .,z DEpy(z) =cl. (c€C) 15)
Let Eg and E v be
(0) _(0) (N) (V)
e e;- e e
Bo=| % % | EN=l B R ] (16
6(21) 652) 651) egz)
and then it can be verified that
(N)  (N) (0) (0)
e e e e
ste=| o o [ K]0 o
€12° €22 €21 €22
Let U be
& e
U= ™ ™ | (18)
€12 €99
and then multiply U to E,;,, from the left side.
X X 0 O _
UEpoly:[ 0 0 }+---+{ v« ]z No19)

where X denotes nonzero entries. With some manipulation,
we can obtain the following the order-reduction representa-
tion.

E,oy = cUTA(2)E(z) (3ce ©), (20)

where E(z) is the order-(N — 1) pseudo-orthogonal matrix.
Thus we can obtain (12) by repeating manipulation like from
(16) to (20) until the order of polyphase matrix reaching to
Zero.

4. COMPLEX LINEAR-PHASE
PSEUDO-ORTHOGONAL FILTERBANK

We discussed the lattice structure of CPOFB and CLPFB in
the previous sections. The analysis polyphase matrix of CPOFB
(Ecpo(z)) and CLPFB (Ecr,p(2)) can be rewritten as fol-
lows:

Eoro(z) = [ L ]PNA(z)PNlmPlA(z)PO

21

Borr(@ = [ ) [HvAG@HY- - HAG)H,

(22)
where P, and H;, are

_ Qg bk
]aHk—[H W:| (ak,ka(C).

If some building blocks satisfy both (21) and (22), we can
obtain a CLPPOFB. Comparing with (21) and (22), we can
easily obtain the following necessary and sufficient condition

br = —by.. (23)

ag bk

Pi= [ —b  a

akzﬁa

Therefore, aj, has to be real number and by, has to be purely
imaginary number. Finally, we can obtain a lattice structure
for CLPPOFB. The analysis polyphase matrix of CLPPOFB
(Ecppo) can be represented as follows:

1 1
ECLppo(Z) = |: 1 _1 :|VNA(Z)VN1 VlA(Z)VO
(24)
where V, is
sk Jtk
Vi = . , 25
k { ity sk } (25)

where sy, and t;, are real number.

5. DESIGN EXAMPLE

In this section, we present a design example of CLPPOFB
based on lattice structure discribed the previous section.

We implement and optimize filterbank based on (24). In
different applications, various objective functions can be used
in optimization, for example stopband attenuation and coding
gain. In this paper, we minimize the ® which is calculated by
summing error of the passband energy and stopband energy
as follows:

1
&= (B +EL,),
i=0

B = |
Q
B = [ )P

where i € {0,1}, Ho(w) and H;(w) are transfer functions
of the lowpass filter and the highpass filter, E,(,?l)ss, Es(?gp,
E,(J}L)ss, and ES},p are the passband and stopband energy er-
ror of the lowpass filter and highpass filter respectively. We

(1 = |Hi(w)])*dw,

i,p

_ 30 227 _ 1907 166 _
set (dop = [0, 5551 U [556 1] Do.s = [ 555, o56 ] hp =
[0, 5251 U [Fs6> 1] and Q4 « = [55%, Ssa- ], where Qo ,, Qo s,

Q4 p, and €2, ; are the passband and stopband of the lowpass
and highpass filter, respectively. For simplicity to optimize
the FB, we adopted the following building block as (25):

cos by,
j sin 0y,

_ —j sin 0k
Vi, = 2050, (0r € R). (26)
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Fig. 1. Design example based on the structure (24) with filter length of 18.

The frequency responses and phases are shown in Fig. 1
when theirs filter lengths are 18 in Fig. 1. These frequency
responses indicate both the lowpass and highpass filters have
good stopband attenuation. Of course, both filters have the
LP propety.

6. CONCLUSION

In this paper, the CPOFB based on the concept of PO has
been proposed. This kind of orthogonality is not same as
the conventional one essentially. However, we can design
CPOFB as useful and easy as conventional one. Addtion-
ally, it is possible that a two-channel complex-valued linear-
phase orthogonal-like FB, CLPPOFB, its filter lengths are
more than 2. Therefore, it is expected CLPPOFB is useful
for image/video compression. Our future work is to investi-
gate CLPPOFB’s application for them.
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